math/big.nat.div (method)
29 uses
math/big (current package)
float.go#L1369: z.mant, r = z.mant.div(stk, nil, xadj, y.mant)
int.go#L274: z.abs, _ = z.abs.div(nil, nil, x.abs, y.abs)
int.go#L283: _, z.abs = nat(nil).div(nil, z.abs, x.abs, y.abs)
int.go#L300: z.abs, r.abs = z.abs.div(nil, r.abs, x.abs, y.abs)
nat.go#L715: zz, r = zz.div(stk, r, z, m)
nat.go#L735: zz, r = zz.div(stk, r, z, m)
nat.go#L896: _, x = nat(nil).div(stk, nil, x, m)
nat.go#L919: _, RR = nat(nil).div(stk, RR, zz, m)
nat.go#L974: _, zz = nat(nil).div(stk, nil, zz, m)
nat.go#L1067: z2, _ = z2.div(stk, nil, x, z1)
natconv.go#L426: q, r = q.div(stk, r, q, table[index].bbb)
natdiv.go#L511: _, r = q.div(stk, z, u, v)
natdiv.go#L518: func (z nat) div(stk *stack, z2, u, v nat) (q, r nat) {
prime.go#L114: quotient, y = quotient.div(stk, y, y, n)
prime.go#L262: t2, vk = t2.div(stk, vk, t1, n)
prime.go#L266: t2, vk1 = t2.div(stk, vk1, t1, n)
prime.go#L273: t2, vk1 = t2.div(stk, vk1, t1, n)
prime.go#L277: t2, vk = t2.div(stk, vk, t1, n)
prime.go#L299: t2, t3 = t2.div(stk, t3, t1, n)
prime.go#L319: t2, vk = t2.div(stk, vk, t1, n)
rat.go#L124: q, r := q.div(stk, a2, a2, b2) // (recycle a2)
rat.go#L222: q, r := q.div(stk, a2, a2, b2) // (recycle a2)
rat.go#L450: z.a.abs, _ = z.a.abs.div(stk, nil, z.a.abs, f.abs)
rat.go#L451: z.b.abs, _ = z.b.abs.div(stk, nil, z.b.abs, f.abs)
ratconv.go#L351: q, r := nat(nil).div(stk, nat(nil), x.a.abs, x.b.abs)
ratconv.go#L359: r, r2 := r.div(stk, nat(nil), r, x.b.abs)
ratconv.go#L436: if _, r = t.div(stk, r, q, f); len(r) != 0 {
ratconv.go#L452: if t, r = t.div(stk, r, q, tab[i]); len(r) == 0 {
ratconv.go#L460: if t, r = t.div(stk, r, q, natFive); len(r) != 0 {