math/big.nat.div (method)

29 uses

	math/big (current package)
		float.go#L1369: 	z.mant, r = z.mant.div(stk, nil, xadj, y.mant)
		int.go#L274: 	z.abs, _ = z.abs.div(nil, nil, x.abs, y.abs)
		int.go#L283: 	_, z.abs = nat(nil).div(nil, z.abs, x.abs, y.abs)
		int.go#L300: 	z.abs, r.abs = z.abs.div(nil, r.abs, x.abs, y.abs)
		nat.go#L715: 			zz, r = zz.div(stk, r, z, m)
		nat.go#L735: 				zz, r = zz.div(stk, r, z, m)
		nat.go#L896: 		_, x = nat(nil).div(stk, nil, x, m)
		nat.go#L919: 	_, RR = nat(nil).div(stk, RR, zz, m)
		nat.go#L974: 			_, zz = nat(nil).div(stk, nil, zz, m)
		nat.go#L1067: 		z2, _ = z2.div(stk, nil, x, z1)
		natconv.go#L426: 			q, r = q.div(stk, r, q, table[index].bbb)
		natdiv.go#L511: 	_, r = q.div(stk, z, u, v)
		natdiv.go#L518: func (z nat) div(stk *stack, z2, u, v nat) (q, r nat) {
		prime.go#L114: 			quotient, y = quotient.div(stk, y, y, n)
		prime.go#L262: 			t2, vk = t2.div(stk, vk, t1, n)
		prime.go#L266: 			t2, vk1 = t2.div(stk, vk1, t1, n)
		prime.go#L273: 			t2, vk1 = t2.div(stk, vk1, t1, n)
		prime.go#L277: 			t2, vk = t2.div(stk, vk, t1, n)
		prime.go#L299: 		t2, t3 = t2.div(stk, t3, t1, n)
		prime.go#L319: 		t2, vk = t2.div(stk, vk, t1, n)
		rat.go#L124: 	q, r := q.div(stk, a2, a2, b2) // (recycle a2)
		rat.go#L222: 	q, r := q.div(stk, a2, a2, b2) // (recycle a2)
		rat.go#L450: 			z.a.abs, _ = z.a.abs.div(stk, nil, z.a.abs, f.abs)
		rat.go#L451: 			z.b.abs, _ = z.b.abs.div(stk, nil, z.b.abs, f.abs)
		ratconv.go#L351: 	q, r := nat(nil).div(stk, nat(nil), x.a.abs, x.b.abs)
		ratconv.go#L359: 	r, r2 := r.div(stk, nat(nil), r, x.b.abs)
		ratconv.go#L436: 		if _, r = t.div(stk, r, q, f); len(r) != 0 {
		ratconv.go#L452: 		if t, r = t.div(stk, r, q, tab[i]); len(r) == 0 {
		ratconv.go#L460: 		if t, r = t.div(stk, r, q, natFive); len(r) != 0 {